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A critical issue for Ericsson et al.’s proposal is the development of a fully adequate

description of neurophysiological substrates for deliberate practice. Ericsson et al. do

provide two substantial subsections on biological substrates—namely, their

subsections, ‘Acquisition of superior power, control, and speed of motor activities’

and ‘Improvement in the selection of actions in representative situations’. However,

as it stands, these discussions do not adequately explain the remarkableness of

giftedness.

To get at the details of the subtle effects of deliberate practice, Hesheng Liu1 and I

recently proposed a thoroughgoing neurophysiological explanation of the child

prodigy (Vandervert & Liu, in press). Our explanation is based upon the collaboration

of working memory and cognitive functions of the cerebellum (Ito, 1997, 2005;

Vandervert, 2003a, b; Vandervert et al., 2007). In our approach all repetitive working

memory processes taking place in the cerebral cortex (e.g., in deliberate practice) are

adaptively modeled in the cerebellum (see Ito, 1997, 2005; Chein et al., 2003;

Vandervert et al., 2007). When the resulting cerebellar control models are fed back

to working memory areas of the cortex, the thought processes of working memory

become faster, higher in attentional control, and more appropriately and optimally

timed (Akshoomoff et al., 1997; Ito, 1997, 2005; Ivry, 1997).

The above newer role of the ‘cognitive cerebellum’ (see Schmahmann, 1997;

Ramnani, 2006) offers needed detailed support for Ericsson et al.’s proposal. In

addition to the cerebellum constructing adaptive models of mental activity occurring

in working memory, it has been convincingly argued that the cerebellum does this in

the form of multi-pairs of models that constitute complex modular architectures for

mental processes that when fed to working memory functions in the cerebral cortex

act to facilitate the development of new, higher levels of performance (Haruno et al., 1999;

Wolpert et al., 2003). This process comes about through the combination of learned
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‘forward’ and ‘controller’ pairs of cerebellar models. Forward cerebellar models are

anticipatory/exploratory controls for movement and thought, and controller models

are automatic controllers that are learned through the repetition of successful

forward models. The resulting cerebellar control architecture has been termed

Hierarchical Modular Selection and Identification for Control (HMOSAIC) (see

Imamizu et al., 2003; Wolpert et al., 2003; see also Leiner et al., 1991; Leiner &

Leiner, 1997, for modular specificity between the cerebellum and prefrontal areas of

the cerebral cortex.) New, hierarchically-arranged levels of the cerebellar control

architecture (HMOSAIC) develop as practice is extended over time. These levels are

direct explanatory counterparts to the stages Ericsson et al. describe in their Figure 1.

Cerebellum-mediated stages of deliberate practice

Japan Prize laureate Masao Ito (1993, 1997, 2005) has long made the case that

movement and thought are, in terms of cerebrocerebellar system neurology,

‘identical’ control objects. Thus, in terms of neural control, hands, feet, computer

keyboards, for example, and all thoughts are equivalent ‘control objects’. In

describing how pairs of forward and controller cerebellar models work together, Ito

(2005) commented on how advances in both motor and mental control would take

place at an unconscious level:

If the forward and inverse [controller] model controls are combined, an interesting

possibility emerges [after much practice] that the cerebellum conducts the entire

process of thinking … which will not come up to the level of consciousness. This may

explain our daily experience that, after repeated trials of learning, a correct answer [or a

correct movement] pops out readily without a conscious effort. (Ito, 2005, p. 102)

Because forward models may be uniquely combined with other forward models in

HMOSAIC, or variant forward models may be composed from the possibilities of

movement or thought spaces already learned (Haruno et al., 1999, 2001; Wolpert

et al., 2003), the above process Ito describes would also advance behavioral and

mental capabilities to higher, goal-directed levels.

Hesheng Liu and I believe that this process takes place countless times during a

developmentally initiated version of deliberate practice as the individual transitions

to the development of new, more accomplished levels of the HMOSAIC architecture

(Vandervert & Liu, in press). In this regard, we argued how the development of

HMOSAIC can be accelerated along modular lines through high attentional control

starting in early infancy and thus account for the child prodigy. It is important to

note here that the cerebellar modules of the deliberate practice architecture include

thought, movement, attentional and emotional components (see Schmahmann,

2004).

In regard to Ito’s above comment concerning ‘cerebellum-mediated thinking’,

what ‘pops out’ due to cerebellar modeling is either the well-learned solution to a

problem (as Ito suggests) or it is the next silently emerging instance, level or stage of

gifted performance. If there is a ‘silent’ or ‘mysterious’ mechanism behind the

remarkableness of giftedness, I believe it lies here in the ‘quietude’ of cerebellar

90 L. R. Vandervert

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
0
:
1
2
 
2
8
 
M
a
r
c
h
 
2
0
1
1



modeling within HMOSAIC that occurs in small forward/controller modeling

increments during Ericsson et al.’s deliberate practice.

Note

1. Hesheng Liu is currently based at Massachusetts General Hospital/Harvard Medical School/

Massachusetts Institute of Technology, Athinoula A. Martinos Center for Biomedical Imaging.
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